Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Transl Med ; 14(629): eabj5305, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-2325160

ABSTRACT

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Subject(s)
Aluminum Hydroxide , COVID-19 , Aged , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
2.
PLoS Comput Biol ; 19(5): e1011050, 2023 05.
Article in English | MEDLINE | ID: covidwho-2319495

ABSTRACT

Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.


Subject(s)
COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2 , Atorvastatin/pharmacology , Bayes Theorem , Endothelial Cells , Simvastatin/pharmacology , Simvastatin/therapeutic use , Drug Repositioning , Medical Records
3.
Nat Commun ; 14(1): 1130, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2269560

ABSTRACT

SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Nanoparticles , Animals , Humans , Mice , Antibodies, Neutralizing , COVID-19/prevention & control , Papio , SARS-CoV-2/genetics , Vaccines/chemistry , Vaccines/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology
4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2045782

ABSTRACT

Monoclonal antibodies (mAbs) targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have demonstrated clinical efficacy in preventing or treating coronavirus disease 2019 (COVID-19), resulting in the emergency use authorization (EUA) for several SARS-CoV-2 targeting mAb by regulatory authority. However, the continuous virus evolution requires diverse mAb options to combat variants. Here we describe two fully human mAbs, amubarvimab (BRII-196) and romlusevimab (BRII-198) that bind to non-competing epitopes on the receptor binding domain (RBD) of spike protein and effectively neutralize SARS-CoV-2 variants. A YTE modification was introduced to the fragment crystallizable (Fc) region of both mAbs to prolong serum half-life and reduce effector function. The amubarvimab and romlusevimab combination retained activity against most mutations associated with reduced susceptibility to previously authorized mAbs and against variants containing amino acid substitutions in their epitope regions. Consistently, the combination of amubarvimab and romlusevimab effectively neutralized a wide range of viruses including most variants of concern and interest in vitro. In a Syrian golden hamster model of SARS-CoV-2 infection, animals receiving combination of amubarvimab and romlusevimab either pre- or post-infection demonstrated less weight loss, significantly decreased viral load in the lungs, and reduced lung pathology compared to controls. These preclinical findings support their development as an antibody cocktail therapeutic option against COVID-19 in the clinic.

5.
Sci Transl Med ; 14(658): eabq4130, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1992934

ABSTRACT

Despite the remarkable efficacy of COVID-19 vaccines, waning immunity and the emergence of SARS-CoV-2 variants such as Omicron represents a global health challenge. Here, we present data from a study in nonhuman primates demonstrating durable protection against the Omicron BA.1 variant induced by a subunit SARS-CoV-2 vaccine comprising the receptor binding domain of the ancestral strain (RBD-Wu) on the I53-50 nanoparticle adjuvanted with AS03, which was recently authorized for use in individuals 18 years or older. Vaccination induced neutralizing antibody (nAb) titers that were maintained at high concentrations for at least 1 year after two doses, with a pseudovirus nAb geometric mean titer (GMT) of 1978 and a live virus nAb GMT of 1331 against the ancestral strain but not against the Omicron BA.1 variant. However, a booster dose at 6 to 12 months with RBD-Wu or RBD-ß (RBD from the Beta variant) displayed on I53-50 elicited high neutralizing titers against the ancestral and Omicron variants. In addition, we observed persistent neutralization titers against a panel of sarbecoviruses, including SARS-CoV. Furthermore, there were substantial and persistent memory T and B cell responses reactive to Beta and Omicron variants. Vaccination resulted in protection against Omicron infection in the lung and suppression of viral burden in the nares at 6 weeks after the final booster immunization. Even at 6 months after vaccination, we observed protection in the lung and rapid control of virus in the nares. These results highlight the durable and cross-protective immunity elicited by the AS03-adjuvanted RBD-I53-50 nanoparticle vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Subunit
6.
Lancet Infect Dis ; 22(11): 1565-1576, 2022 11.
Article in English | MEDLINE | ID: covidwho-1977930

ABSTRACT

BACKGROUND: Emerging SARS-CoV-2 variants and evidence of waning vaccine efficacy present substantial obstacles towards controlling the COVID-19 pandemic. Booster doses of SARS-CoV-2 vaccines might address these concerns by amplifying and broadening the immune responses seen with initial vaccination regimens. We aimed to assess the immunogenicity and safety of a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373). METHODS: This secondary analysis of a phase 2, randomised study assessed a single booster dose of a SARS-CoV-2 recombinant spike protein vaccine with Matrix-M adjuvant (NVX-CoV2373) in healthy adults aged 18-84 years, recruited from 17 clinical centres in the USA and Australia. Eligible participants had a BMI of 17-35 kg/m2 and, for women, were heterosexually inactive or using contraception. Participants who had a history of SARS-CoV or SARS-CoV-2, confirmed diagnosis of COVID-19, serious chronic medical conditions, or were pregnant or breastfeeding were excluded. Approximately 6 months following their primary two-dose vaccination series (administered day 0 and day 21), participants who received placebo for their primary vaccination series received a placebo booster (group A) and participants who received NVX-CoV2373 for their primary vaccination series (group B) were randomly assigned (1:1) again, via centralised interactive response technology system, to receive either placebo (group B1) or a single booster dose of NVX-CoV2373 (5 µg SARS-CoV-2 rS with 50 µg Matrix-M adjuvant; group B2) via intramuscular injection; randomisation was stratified by age and study site. Vaccinations were administered by designated site personnel who were masked to treatment assignment, and participants and other site staff were also masked. Administration personnel also assessed the outcome. The primary endpoints are safety (unsolicited adverse events) and reactogenicity (solicited local and systemic) events and immunogenicity (serum IgG antibody concentrations for the SARS-CoV-2 rS protein antigen) assessed 14 days after the primary vaccination series (day 35) and 28 days following booster (day 217). Safety was analysed in all participants in groups A, B1, and B2, according to the treatment received; immunogenicity was analysed in the per-protocol population (ie, participants in groups A, B1, and B2) who received all assigned doses and who did not test SARS-CoV-2-positive or received an authorised vaccine, analysed according to treatment assignment). This trial is registered with ClinicalTrials.gov, NCT04368988. FINDINGS: 1610 participants were screened from Aug 24, 2020, to Sept 25, 2020. 1282 participants were enrolled, of whom 173 were assigned again to placebo (group A), 106 were re-randomised to NVX-CoV2373-placebo (group B1), and 104 were re-randomised to NVX-CoV2373-NVX-CoV2373 (group B2); after accounting for exclusions and incorrect administration, 172 participants in group A, 102 in group B1, and 105 in group B2 were analysed for safety. Following the active booster, the proportion of participants with available data reporting local (80 [82%] of 97 participants had any adverse event; 13 [13%] had a grade ≥3 event) and systemic (75 [77%] of 98 participants had any adverse event; 15 [15%] had a grade ≥3 event) reactions was higher than after primary vaccination (175 [70%] of 250 participants had any local adverse event, 13 [5%] had a grade ≥3 event; 132 [53%] of 250 had any systemic adverse event, 14 [6%] had a grade ≥3 event). Local and systemic events were transient in nature (median duration 1·0-2·5 days). In the per-protocol immunogenicity population at day 217 (167 participants in group A, 101 participants in group B1, 101 participants in group B2), IgG geometric mean titres (GMT) had increased by 4·7-fold and MN50 GMT by 4·1-fold for the ancestral SARS-CoV-2 strain compared with the day 35 titres. INTERPRETATION: Administration of a booster dose of NVX-CoV2373 resulted in an incremental increase in reactogenicity. For both the prototype strain and all variants evaluated, immune responses following the booster were similar to or higher than those associated with high levels of efficacy in phase 3 studies of the vaccine. These data support the use of NVX-CoV2373 in booster programmes. FUNDING: Novavax and the Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 , Vaccines , Adult , Female , Humans , COVID-19 Vaccines/adverse effects , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , Pandemics/prevention & control , Immunogenicity, Vaccine , COVID-19/prevention & control , Adjuvants, Immunologic , Double-Blind Method , Antibodies, Viral
7.
NPJ Vaccines ; 7(1): 57, 2022 May 26.
Article in English | MEDLINE | ID: covidwho-1864747

ABSTRACT

The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.

8.
Nature ; 604(7904): 134-140, 2022 04.
Article in English | MEDLINE | ID: covidwho-1671590

ABSTRACT

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Subject(s)
Antiviral Agents , Drug Evaluation, Preclinical , Nucleosides , Pyrimidines , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
9.
Nat Commun ; 12(1): 6055, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1475294

ABSTRACT

COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/administration & dosage , Indoles/administration & dosage , Leucine/administration & dosage , Pyrrolidinones/administration & dosage , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Alanine/administration & dosage , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/pharmacokinetics , Animals , COVID-19/virology , Chlorocebus aethiops , Coronavirus 229E, Human/drug effects , Coronavirus 229E, Human/enzymology , Coronavirus Protease Inhibitors/adverse effects , Coronavirus Protease Inhibitors/pharmacokinetics , Disease Models, Animal , Drug Design , Drug Synergism , Drug Therapy, Combination , HeLa Cells , Humans , Indoles/adverse effects , Indoles/pharmacokinetics , Infusions, Intravenous , Leucine/adverse effects , Leucine/pharmacokinetics , Mice , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Vero Cells
10.
Nat Commun ; 12(1): 372, 2021 01 14.
Article in English | MEDLINE | ID: covidwho-1033459

ABSTRACT

The COVID-19 pandemic continues to spread throughout the world with an urgent need for a safe and protective vaccine to effectuate herd protection and control the spread of SARS-CoV-2. Here, we report the development of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) from the full-length spike (S) protein that is stable in the prefusion conformation. NVX-CoV2373 S form 27.2-nm nanoparticles that are thermostable and bind with high affinity to the human angiotensin-converting enzyme 2 (hACE2) receptor. In mice, low-dose NVX-CoV2373 with saponin-based Matrix-M adjuvant elicit high titer anti-S IgG that blocks hACE2 receptor binding, neutralize virus, and protects against SARS-CoV-2 challenge with no evidence of vaccine-associated enhanced respiratory disease. NVX-CoV2373 also elicits multifunctional CD4+ and CD8+ T cells, CD4+ follicular helper T cells (Tfh), and antigen-specific germinal center (GC) B cells in the spleen. In baboons, low-dose levels of NVX-CoV2373 with Matrix-M was also highly immunogenic and elicited high titer anti-S antibodies and functional antibodies that block S-protein binding to hACE2 and neutralize virus infection and antigen-specific T cells. These results support the ongoing phase 1/2 clinical evaluation of the safety and immunogenicity of NVX-CoV2373 with Matrix-M (NCT04368988).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Disease Models, Animal , Female , Male , Mice , Mice, Inbred BALB C , Papio , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL